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Role of parametric noise in nonintegrable quantum dynamics
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The effect of parametric perturbations on the quantum dynamics of a system with nonintegrable
classical limit and a mixed phase space is shown to depend crucially on the local invariant phase
space structures sampled by the evolution. Using a probe coherent state four distinct scenarios are
considered: (i) large regular regions surrounding primary fixed points; (i) smaller regular regions
corresponding to higher order orbits; (iii) scarred states on hyperbolic fixed points; (iv) chaotic
regions. The result that scarring stabilizes quantum dynamics against fluctuations is discussed in
the general context of instability in the quantum evolution as well as in relation to recent experiments

on microwave ionization of Rydberg atoms.

PACS number(s): 05.45.+b, 03.65.Sq

Quantum dynamics having a nonintegrable classical
limit with a mixed phase space are not as well under-
stood as their counterparts with a strictly chaotic limit.
The complicated quantum behavior results from coex-
isting regular and chaotic regions in the classical phase
space, and the effects of these local features have been
probed by numerical simulations as well as in laboratory
experiments.

In the absence of parametric fluctuations, there is a
marked difference in the classical and the quantum be-
havior of bounded, mixed dynamics. Whereas the clas-
sical dynamics can show arbitrarily complex behavior in
time, the quantum case is limited to being quasiperiodic.
However, a “Landau scenario” has been proposed for the
approach to the semiclassical limit whereby more and
more frequencies appear in the quantum behavior thus
resolving the complex classical evolution on longer time
scales [1]. An essential requirement for this increase in
number of frequencies is that, starting with simple initial
conditions (e.g., coherent state), the excited eigenstates
of the quantum dynamics should display increasing com-
plexity on approaching the semiclassical limit. However,
as shown by Peres [2], this increased complexity is ac-
companied by a heightened sensitivity of the dynamics
to perturbations.

Unitarity ensures that two slightly different initial
conditions evolving under the same quantum dynamics
maintain a constant overlap. This is not, however, true
when the same initial state evolves under two slightly dif-
ferent dynamics. Stated differently, the behavior of the
overlap under different dynamics depends strongly on the
phase space structures probed by the state, with limiting
cases of small periodic oscillations in classically regular
regions and strong decay followed by quasiperiodic fluc-
tuations in chaotic regimes [2].

These considerations are made more relevant to exper-
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iment by studying a dynamics in few degrees of freedom
subject to parametric fluctuations. The issue now is how
these fluctuations affect the stability of the dynamics.
For instance, it is known that quasiperiodic [3,4] or ran-
dom [5,6] external driving and phase randomization by
measurement [7] can strongly alter stability and spectral
features. Added motivation comes from recent experi-
ments which assess the influence of controlled parametric
noise on the quantum evolution in a mixed phase space
8]

Here we consider the mixed phase-space dynamics of
the piecewise linear standard map (9,10}, and demon-
strate that the effect of fluctuations on the quantum evo-
lution depends crucially on the invariant structures in
phase space sampled by the dynamics.

As is well known, the evolution of a state |¢(t)) is
described by the quantum map

[¥(t +1)) = U@B)¥(2)) (1)

where the time-dependent, unitary evolution operator
over a single kick is

U(t) — e—ip’/zhe—iK(t)V(q)/h , (2)

with integer ¢. The kicking potential V(g) is a piecewise
parabolic approximation of cos(q) leading to a modified
standard map with piecewise linear forcing (for details
see [9,10]). The position and momentum of a particle are
denoted by (g,p) and A = 2n/N with integer N. Note
that statements on the sizes of regions in phase space
are with respect to A. Instead of the usually constant
kick strength K, we choose K(t) to take a value K; or
K, with probability 1/2. It is this random process that
constitutes the parametric fluctuation.

The effect of the fluctuations is assessed by the return
probability P,(t) which is defined as the overlap of | (t))
with the initial state |4(0)):

P.(t) = [(3(0)l()]* . ®3)
In all cases |4(0)) = |g,p) is a coherent state placed at
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the coordinates ¢ and p. Two distinct averages are con-
sidered with (P, (t)) denoting a simple time average while
{(Pr(t))) involves both a temporal and an ensemble aver-
age over different realizations of K (t). The time average
is useful as it is inversely related to the number of states
(in some representation like the eigenrepresentation of
the dynamics in the absence of noise) excited by the co-
herent state (see Ref. [9] for details). Larger values of the
time average mean the composition of the initial state is
more robust [2] and, thus, less susceptible to noise.

When |g,p) lies in a large regular region like that sur-
rounding a primary elliptic fixed point or low-order peri-
odic orbit, the evolution is expected to be less suscepti-
ble to fluctuations. That is, sufficiently small amplitude
fluctuations should not destroy the stability of the orbit.
Figure 1 shows (P,(t)) over a large range of fluctuations
when the initial state is in the regular region near the pri-
mary elliptic fixed point. The kick strength K is either
K; =1 or K; = K; + dK with equal probability. Note
that the initial coherent state is well within the elliptic
region for K as well as K + dK. It is clear that even 5%
parametric noise levels (dK/K) have only a negligible in-
fluence on the stability of the dynamics. The reason is
that the eigenstates excited by the coherent state are es-
sentially the same for the two values of K. In this sense
the part of the Hilbert space related to the regular region
is robust against small “physical” perturbations having a
smooth classical limit. Different realizations of the noise
lead to fluctuations which are small compared with the
large value of the time average. Thus the general effect is
a plateau, for small dK, of height = 1/ VN and roughly
constant width.

Note that for the piecewise linear map the eigenstates
in the elliptic region are well approximated by harmonic
oscillator eigenstates [10]. Thus, in principle, (P, (t)) can
be estimated in the semiclassical limit for dK = 0 and for
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FIG. 1. The return probability (P.(t)) averaged over the
time interval 0 < t < 5000, as defined in the text. The kick
parameter varies between K = 1 and 1+dK. The initial state
is a coherent state placed at ¢ = 1.1w and p = 0 which is near
the elliptic fixed point. Results are shown for three different
values of £ = 2« /N with N = 50, 100, and 200.
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FIG. 2. The Husimi distribution |(%(t)|g,p)|? for coherent
initial state |go, po) = |1.17,0) for ¢t = 3500 using K = 1 and
dK = 0.08 (a) and 0.09 (b).

a coherent initial state placed well inside the elliptic re-
gion. However, even in this simple case the result cannot
be put in a closed form.

On increasing dK further the coherent state is de-
stroyed in the long time limit, spreading over the allowed
phase space. For N = 50 this happens rather abruptly
for dK between 0.08 and 0.09. In Fig. 2 we compare
the Husimi distributions obtained on iterating the same
initial state inside the elliptic region for ¢ = 3500 but
with dK = 0.08 (a) and 0.09 (b). It is clear that the
destruction of the coherent state is complete though the
breakdown of coherence for dK = 0.09 occurs as early as
t = 1000.

In Fig. 3, a coherent state was placed on an elliptic
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FIG. 3. The mean return probability {(P,(t)) (averaged
over the interval in Fig. 1) but for K = 1.4 and 1.4 + dK.
The initial state is a coherent state placed, near an elliptic
3-cycle, at ¢ = 0.237 and p = 0.457. Three different values
for N are used: 50, 100, and 200.
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3-cycle of the piecewise linear standard map which is
surrounded by small (of the order of %) regular regions.
Once again, the initial state covers the 3-cycle for both
K and K + dK. The mean return probability shows a
pronounced maximum for dK = 0 which decays strongly
even for fluctuations of a few percent. Closer inspection
of the dynamics reveals several processes. First, there
is tunneling between the lobes of the 3-cycle which has
only a moderate effect on ((P,(t))). Next, tunneling ex-
ists between the 3-cycle and another symmetry related
3-cycle which can eventually lead to refocusing on the
original 3-cycle. Lastly, for larger fluctuations there is
the likelihood of spreading of the wave packet onto the
neighboring heteroclinic tangles of the 3-cycle as well as
the homoclinic tangle of the hyperbolic fixed point at the
origin. This is the most likely cause for the very rapid
decay of P.(t). It is worth noting that the lobes of the
3-cycle are of order A (for the N values chosen), which
means they can each support one state. This leads to a
simple estimate 1/6 < (P,(t)) < 1/3 for small dK where
the limiting values correspond to the excitation or not of
the symmetry related 3-cycle.

The variation with % shows that smaller values pro-
vided greater containment of the initial state leading to
enhanced return probabilities at lower noise levels. On
the other hand, with increasing fluctuations and greater
overlap with the tangles, the lower values of %Z mean
greater instability and hence smaller return probabilities.
For N = 50 the initial coherent state was too large to be
contained in the elliptic regions in the presence of the
perturbation. Decreasing % reduces the spread of the co-
herent initial state in phase space and leads to better
containment in the elliptic regions even for larger fluctu-
ations as seen from the simulations.

The most interesting case involves initial states in the
vicinity of unstable fixed points. Here the phenomenon
of scarring (see Heller [11] and [9,10] for the specific map)
enhances the return probability. As the strength of scar-
ring seems to decrease at least as fast as £ [12] we show
results only for N = 50. The larger value of 4 is also ap-
propriate for the experimental discussion which follows.
In Fig. 4, we take K = 4 which guarantees large scale
chaos and contrast {(P,(t))) for three different initial con-
ditions: (i) sufficiently far away from the scar, (ii) on the
scar, and (iii) on the scar but with additional measures
taken to destroy antiunitary symmetries. These symme-
tries result in enhanced return probability on certain lines
of symmetry and especially at the origin (see [13]).

In the absence of strong scarring, the average return
probability is only slightly influenced by fluctuations.
This is in sharp contrast to cases (ii) and (iii) where a
pronounced maximum is seen for sufficiently small fluctu-
ations. The only difference is that (ii) does not decay to
the random matrix limit [as do (i) and (iii)] because of the
accidental antiunitary symmetries. Away from the hy-
perbolic point, the initial coherent state spreads quickly
over the homoclinic tangle of the hyperbolic fixed point
and ultimately covers almost the entire phase space uni-
formly. This leads to a mean return probability of around
1/N = 0.02. In the other two cases, for sufficiently small
fluctuations (few percent), the initial state spreads but is
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also refocused on a time scale of the order of NV leading to
a strongly enhanced ((P,(t))). Further increase in noise
levels leads to breakdown of scarring.

These results clearly indicate that scarring persists for
sufficiently small fluctuations. The noise level needed to
reduce the unperturbed return probability by a factor of
2, say, is much smaller than for the elliptic fixed point
(Fig. 1) but only slightly smaller than for the elliptic
3-cycle (Fig. 2). It is certainly large enough to be ob-
servable even with moderate resolution of the parameter
K.

On decreasing % (or increasing N), we find the return
probability in the absence of fluctuations is reduced but
the scarring is still clearly visible. On the other hand, the
susceptibility to fluctuations is increased and scarring is
destroyed by much smaller fluctuations at smaller values
of Ai. Therefore we conclude that the importance of scar-
ring on approaching the semiclassical limit is ultimately
limited by fluctuations in the parameters of the system
[12].

Qualitatively, the results presented here are generic to
any quantum dynamics in a mixed phase space. We il-
lustrate this feature by relating our findings to recent ex-
periments on the effects of noise on ionization thresholds
of excited hydrogen atoms.

Quantum stability associated with invariant classical
structures including scarring is relevant to interpreting
ionization curves for hydrogen atoms interacting with
microwave radiation [14,15]. This stability is reflected
in the higher field values needed to produce the same de-
gree of ionization and appears as bumps in the frequency
dependent ionization threshold. Each bump is identified
by the scaled frequency £ = ndw defined as the ratio
of microwave frequency w to the Kepler frequency of the
initial state (principal quantum number ng) and the lo-
cations correlate both with stable and unstable (leading
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FIG. 4. The mean return probability (P,(t))) (as in Fig. 1)
but for K = 4 and 4+dK and for N = 50. Two different initial
coherent states are used: at the hyperbolic fixed point at
the origin (with and without broken time reversal symmetry
indicated by the asterisk) and at (g,p) = (7/2,7/2).
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to scarring) classical structures [15].

Recent experiments assess the effect of parametric
noise on both types of stability [8]. Noise levels ranging
from a few to 15% of the peak field values were consid-
ered. Stability associated with large regular regions as
at Qo =~ 1 was seen to be much less susceptible to noise
than when scarring was the cause, at Qo ~ 1.3. How-
ever, stability resulting from scarring survived for lower
noise levels before rapidly decaying. At the highest noise
levels, only the stability associated with the large regular
region persists. These results are fully consistent with
our findings.

Our results also indicate that careful preparation of the
initial state sufficiently close to a hyperbolic fixed point is
essential for the observability of the scar in experiment.
This, too, is consistent with the analysis by Jensen et
al. [14] of ionization experiments at o =~ 1.3 where the
scarred state constituted 98% of the wave function at
peak field. This should be kept in mind when assessing
effects of noise on other experimentally observed scars.

The experiments also found instances of noise-induced
stability, typically in frequency windows between the sta-
ble bumps. To illustrate this feature here we need to con-
sider larger values of % corresponding to N = 10—20 [14],
which are more consistent with the experiments. Figure
5 shows ((P,(t))) for short times (¢ < 100) across a slice
of phase space for N = 10, K = 3 and four noise levels.
The two peaks at the ends correspond to scarring on the
hyperbolic fixed point ¢ = 0 and the stable region around
the primary island at ¢ = 7. The resolution for N = 10
is too poor to see the effect of smaller structures in the
classical phase space.

Noise-induced enhancement is clearly visible around
q = 0.7, in the vicinity of the large elliptic region. This
enhancement is no longer seen for higher noise levels or
at smaller values of Ai. A possible explanation for the en-
hancement is that the fluctuations mix in the more sta-
ble eigenfunctions localized near or in the elliptic region
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FIG. 5. ((P.(t))) as a function of g for fixed p = 0. As
indicated, four levels of noise are shown and N = 10. Note
that the origin and (g,p) = (w,0) are the hyperbolic and
elliptic fixed points, respectively. Noise-induced enhancement
around g = 0.77 is indicated by the arrow.

into the (otherwise unstable) eigenfunction composition
of the initial state thereby increasing its return prob-
ability. Further increase of the fluctuations ultimately
destabilizes all eigenstates leading to vanishing of the en-
hancement.

In conclusion, we have presented a simple analysis of
the effects of parametric noise on quantum dynamics in
a mixed phase space. We have also demonstrated that
these features are generic by applying our findings to re-
cent ionization experiments. Further, we speculate that
the enhanced stability against small parametric fluctua-
tions may be a useful signature for experimentally iden-
tifying the phenomenon of scarring.

(1] F. Haake, Quantum Signatures of Chaos (Springer,
Berlin,1991).

[2] A. Peres, in Quantum Chaos, edited by H. A. Cerdeira,
G. Casati, and R. Ramaswamy (World Scientific, Singa-
pore, 1990), p. 73.

(3] J. M. Luck, H. Orland, and U. Smilansky, J. Stat. Phys.
53, 551 (1988).

(4] R. Graham, Europhys. Lett. 8, 717 (1989).

[5] E. Ott, T. M. Antonsen, Jr., and J. D. Hanson, Phys.
Rev. Lett. 53, 2187 (1984).

[6] S. Adachi, M. Toda, and K. Ikeda, Phys. Rev. Lett. 61,
655 (1988).

[7] T. Dittrich and R. Graham, Phys. Rev. A 42, 4647
(1990).

[8] L. Sirko, M. R. W. Bellermann, A. Haffmans, P. M. Koch,
and D. Richards, Phys. Rev. Lett. 71, 2895 (1993); L.
Sirko, M. R. W. Bellermann, A. Haffmans, and P. M.

Koch, in Quantum Dynamics of Chaotic Systems: Pro-
ceedings of the Third Drexel Symposium on Quantum
Nonintegrability, edited by J-M. Yuan, D. H. Feng, and
G. M. Zaslavsky (Gordon and Breach, Langhorne, PA,
1993).

[9] R. Scharf and B. Sundaram, Phys. Rev. A 45, 3615
(1992).

[10] R. Scharf and B. Sundaram, Phys. Rev. A 46, 3164
(1992).

[11] E. J. Heller, in Chaos and Quantum Physics, edited by
M.-J. Giannoni, A. Voros, and J. Zinn-Justin (Elsevier,
Amsterdam,1991).

[12] R. Scharf and B. Sundaram (unpublished).

[13] W. K. Wootters, Found. Phys. 20, 1365 (1990).

[14] R. V. Jensen, M. M. Sanders, M. Saraceno, and B. Sun-
daram, Phys. Rev. Lett. 63, 2771 (1989).

[15] P. M. Koch, CHAOS 2, 131 (1992).



